15-112 Fundamentals of Programming

Lecture 2 - Sequence and Functions

Can CarnegieMellonQatar

Course ground rules

- Come to class and be on time
- No private conversations
- No cell phones/lpads/Laptops/etc. during class.
- Do not use computers unless asked
- Bring a supply of paper and pens/pencils
- Do the readings before class and be prepared
- We start at 1:30pm. No one allowed in class after that

Announcements

DFirst assignment has been posted. Due date is Tuesday January 21, at 10:00pm.
-Grace days
QTA meetings

What are algorithms

aSequence of instructions that solve a particular problem

- So Sequence is important
- How would you write a sequence of instructions to bake a cake?

Printing in python

-You can use the print statement to display a message on the screen
print ("Hello World")

DHow would you print a recipe on the screen?

Working with sequences

[Let's work on writing sequential instructions to draw pictures

- If you could draw a line using the command forward and left, how would you draw a square?

Introducing Turtle

\square What is turtle?

- Turtle is like a drawing board
- A python predefined module

- You can create a turtle and move it around
- We need to import turtle!
 CarnegieMellonQatar

Turtle cheatsheet!

- from turtle import *
- Call the turtle module/package with all its functions
\square forward (distance in cm)
- Moves the turtle forward distance, drawing a line behind the turtle
\square backward(distance in cm)
- Moves the turtle backward distance, drawing a line behind the turtle
\square right (angle degrees)
- Turns the turtle right by angle
\square left (angle degrees)
- Turns the turtle left by angle
\square penup()
- Stop all drawing until pendown is called
\square pendown()
- Resume drawing after a call to penup()color (color)
- Change the turtle's current color
\square bye()
- Close turtle
\square done()
- Must be the last statement in a turtle graphics program

Let's play with turtle!

- Problem : draw a square

Square Solution

from turtle import *
forward(200)
left(90)
forward(200)
left(90)
forward(200)
left(90)
forward(200)
left(90)

It gets complicated

- Problem: draw an octagon

Octagon Solution

from turtle import *
forward(200)
left(45)

Introduction to a loops

DOctagon again
from turtle import *
for n in range(8):
forward (200)
left(45)
\rightarrow Much better

Introduction to loops

- Problem: draw 5 circles that overlap each other

Introduction to loops

- Problem: draw 5 octagons that overlap each

Ligiselestothereala CarnegieMellonQatar

Introduction to loops

- Problem: draw 40 octagons that overlap each other

 Carnegie Mellon@atar

Introduction to functions

Problem: Draw a windmill

bagd, logat, leskeda Carnegie MellonQatar

Task Decomposition

-DDraw the Base
DDraw the sails

Draw Base

def drawBase(): forward (100) right(180) forward (50) right(90) forward (250) right(90)
drawBase()

جامثة كا CarnegieMellonQatar

Draw Sails

DDraw three triangles

def triangle():
for n in range(3):
forward (100)
right(120)
for n in range(3):
triangle()
left(120)

Draw the windmill

from turtle import *
def drawBase():
forward(100)
right(180)
forward(50)
right(90)
forward(250)
right(90)
def triangle():
for n in range(3): forward (100)
right(120)
drawBase ()
for n in range(3):
triangle()
left(120)
Ca CarnegieMellonQatar

More decomposition

-What if we want to draw 3 windmills!

Introduction to functions

DDraw 2 flowers as shown in this figure

, حا CarnegieMellon@atar

Introduction to functions

\square Draw 1 flower using squares:
from turtle import *
def square():
for n in range(4):
forward(50)
left(90)
def flower():
for k in range(12):
square ()
left(30)

Introduction to parameters

DDraw 1 flower using squares and defining the number of petals and their sizes

Introduction to parameters

DDraw 1 flower using squares:

```
from turtle import *
```

def square(length):
for n in range (4):
forward(length)
left(90)
def flower(nbPetals, petalSize):
for k in range (nbPetals):
square (petalSize)
left(360/nbPetals)

